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Why is Discrete Gaussian Sampling Necessary?

» For key exchange-it's not!
» Can replace by centered binomial distribution 1), (New Hope etc).

» Sampleable with 2k uniform bits b;, b;:

k

Y« > (b — b))

=0

» Close enough for LWE - small number of samples
» For (SIS-based) signatures - large number of samples per instance

> Can't just approximate

)



Discrete Gaussian Distribution

» Discrete Gaussian Dz, for o
o=2
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Discrete Gaussian Distribution

» Discrete Gaussian Dz, for
o=2

» Each point in Z chosen with
probability proportional to

po(x) = exp(—2*/2)
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Discrete Gaussian Distribution

» Discrete Gaussian Dz, for
o=2

» Each point in Z chosen with
probability proportional to

po(x) = exp(—a*/2)

P Discrete Gaussians maintain many properties of normal distribution
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Discrete Gaussian Distribution

» Discrete Gaussian Dz, for o
o=2

0.15

» Each point in Z chosen with
probability proportional to
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P Discrete Gaussians maintain many properties of normal distribution

» Sums of discrete Gaussians are still discrete Gaussians,

o=,/02+ 02
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Discrete Gaussian Distribution

» Discrete Gaussian Dz, for
o=2

» Each point in Z chosen with
probability proportional to

po(x) = exp(—a*/2)

P Discrete Gaussians maintain many properties of normal distribution

» Sums of discrete Gaussians are still discrete Gaussians,
_ /.2 2
0= /0z+ 0y

» Actual sampling: ignore the (very unlikely) points outside [—70, 70|
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» Cryptographic hash function H hashing input to short vectors
> Sign(y):
@ Sample y < Dzn ;.
® Hash c «+ H(Ay, ).
© Apply rejection sampling to z := Sc+y
O Output (z,c) as signature.
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“Basic” SIS-based Signature Scheme [L'12]

\4
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v

Public key: uniform A, T := AS for short secret key S
Cryptographic hash function H hashing input to short vectors
Sign(p):

@ Sample y < Dzn ;.

® Hash c «+ H(Ay, ).

© Apply rejection sampling to z := Sc+y

O Output (z,c) as signature.
Verify((z, ¢), p):

@ Verify that z is sufficiently short (under Euclidean norm)

@ Verify that H(Az — Tc,u) =c¢

Key Step: rejection sampling — hides S contribution to signature.
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Rejection Sampling

» Standard general technique (due to von Neumann) to sample f(z)
given access to easily sampleable g(x)
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Rejection Sampling

» Standard general technique (due to von Neumann) to sample f(z)
given access to easily sampleable g(x)
@ Sample Y <+ ¢
@® Accept Y with probability min(f(Y)/(Mg(Y),1).
* Need f(x) < Mg(x) (except with negligible probability over x)
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Rejection Sampling for Discrete Gaussian Distributions

» For param o, sample
probabilities must be
proportional to

po(z) = exp(~2?/(20%))
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Rejection Sampling for Discrete Gaussian Distributions

» For param o, sample

probabilities must be :
proportional to f

,00(13) = eXp(—mQ/(202)) ‘‘‘‘‘‘‘‘‘

® Sample Y < [—70, 7o) uniformly.

@® Accept with probability p;(Y)/ps(z), otherwise resample.
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Rejection Sampling for Discrete Gaussian Distributions

» For param o, sample

probabilities must be :
proportional to :

po(z) = exp(—2?/(20%)

® Sample Y < [—70, 70| uniformly.
@® Accept with probability p;(Y)/py(z), otherwise resample.

» Problems:

* High rejection rate

* Computing p, to high precision is expensive
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Bernoulli Rejection Sampling [DDLL’ 12]

U(—To,T0)
1] 3 ! k-D,, +U(0,k—1)
|
| i i
|
|
—TO 0 TO TO -k 0 k T
(a) from uniform distribution (repetition (b) from our adapted distribution (repetition rate
rate = 10) ~ 1.47)

> “Core sampler” of D} where g5 = /1/(2In(2)).

* poy(r) =27 2 €L
* In DDLL'12, binary-style rejection sampler given access to uniform bits.



Bernoulli Rejection-Core Sampler

|

Sampling D,

Draw random bit b.

if random bit b = 0 then return 0

for i =1 to oo do
Draw random bits by, ..., b, for k =2i — 1
if by...,b5_1 #0...0 then restart
if b = 0 then return i




Bernoulli Rejection-Core Sampler

|

Sampling D,

Draw random bit b.

if random bit b = 0 then return 0

for : =1 to co do
Draw random bits by, ..., b, for k =2i — 1
if by...,b5_1 #0...0 then restart
if b = 0 then return i

> Why it works: binary expansion of p,,({0,...,7}) is

J
. —i2
Py (0,. .., 5) = § 02 = 1.1001000010.(.5.01...0(...())1
= 2(j—1



Bernoulli Rejection (Full Algorithm)

Sampling DY | k€ Z

koa!

Sample z « DJ,.

Sample y «+ {0,...,k—1}.

Let z < kz + .

Sample b with probability exp(—y(y + 2kx)/(2(ko2)?))
if b = 0 then restart.

return z.
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Bernoulli Rejection (Full Algorithm)

Sampling DY | k€ Z

koa!

Sample z « DJ,.

Sample y «+ {0,...,k—1}.

Let z < kz +y.

Sample b with probability exp(—y(y + 2kx)/(2(ko2)?))
if b = 0 then restart.

return z.

» Sampling the exponential distribution can be done efficiently
* Takes time O(log k).

* Needs small lookup table with

ET[i] := exp(—2/(2(ko2)?)),i € [0,0(log k)]



Bernoulli Rejection-Timing Attacks

|

Sampling D,

Draw random bit b.

if random bit b = 0 then return 0

for : =1 to co do
Draw random bits by, ..., b, for k =2i — 1
if by...,b5_1 #0...0 then restart
if b = 0 then return i

» Problem-Information Revealed by Timing Attacks!
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Bernoulli Rejection-Timing Attacks

Sampling D,

|

Draw random bit b.

if random bit b = 0 then return 0

for : =1 to co do
Draw random bits by, ..., b, for k =2i — 1
if by...,b5_1 #0...0 then restart
if b = 0 then return i

» Problem-Information Revealed by Timing Attacks!
> When for loop not entered, algorithm always outputs 0
> Algorithm for D7, is slow in worst case.

» Can mitigate with batching
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CDT Sampling

» For each y € [—70, 70|, compute A bit precision

py =Priz <y |z D,
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CDT Sampling

» For each y € [—70, 70|, compute A bit precision

py = Prlz <y |z D,

» Store in (large) table

> To sample D,:
* Sample (sufficient approximation of) uniform r € [0, 1)

* Binary search to find y € [-70, T0] such that r € [p,_1,p,).

» Can be sped up with additional guide table

> Problems: Table is quite large; infeasible for constrained devices.
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Knuth-Yao Sampling

Val | Prob (binary)
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2 0.00011
3 0.01011
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Knuth-Yao Sampling

Val | Prob (binary)
1 0.10010
2 0.00011
3 0.01011

» Designed to minimize (average) number of bits required to sample

> Theorem: Knuth-Yao requires at most 2 more than entropy of dist.
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Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]

X

0'10(:6)

Binary expansion of o19(z)

0
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0.00000110001100011100
0.00000001011000011101
0.00000000000111010001
0.00000000000000001110

P> Need to store table of probabilities, which is large.
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X

0'10(:6)

Binary expansion of o19(z)

0
+1
+10
+20
+30
+40

0.01994711
0.03969525
0.02419707
0.00539909
0.00044318
0.00001338

0.00000101000110110100
0.00001010001010010111
0.00000110001100011100
0.00000001011000011101
0.00000000000111010001
0.00000000000000001110

P> Need to store table of probabilities, which is large.

» Can cut down by performing Knuth-Yao in “blocks”

@ Partition into disjoint sets with almost equivalent probabilities

® Pick a set

© Perform Knuth-Yao within the set

» Knuth-Yao is not constant time!

» Can be mitigated by batching
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@ Partition density function into m
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Discrete Ziggurat Sampling
@ Partition density function into m
rectangles of equal probability
® Choose a rectangle unif. at random
©® Choose point 2’ « [0, z;]

@ If 2/ <z;_q, accept.
® Otherwise, do rejection sampling.

4
po(@)

Ry

Ry
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Discrete Ziggurat Sampling
@ Partition density function into m
rectangles of equal probability
® Choose a rectangle unif. at random
©® Choose point 2’ « [0, z;]
@ If 2/ <z;_q, accept.

® Otherwise, do rejection sampling.

> Sampling in discrete case requires some

4
po(@)

Ry

Ry

yr
0

care
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Discrete Ziggurat Sampling

@ Partition density function into m »
rectangles of equal probability 3

. n
® Choose a rectangle unif. at random "
Y2

©® Choose point 2’ « [0, z;] ]

4
po(@)

@ If 2/ <z;_q, accept. 3 n

® Otherwise, do rejection sampling. " ; |

0 T 2 T3 a4 5 T a7

> Sampling in discrete case requires some care

* Partitioning can’t be done by “area”, but by probability
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Discrete Ziggurat Sampling

@ Partition density function into m »
rectangles of equal probability 3

. n
® Choose a rectangle unif. at random "
Y2

©® Choose point 2’ « [0, z;] ]

4
po(@)

O If 2’ <x;_q, accept. : e

® Otherwise, do rejection sampling. " ; |

0 T 2 T3 a4 5 T a7

> Sampling in discrete case requires some care

* Partitioning can’t be done by “area”, but by probability

» No clear vulnerability to timing attacks.
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Batching

» Technique to make algorithm (e.g. Knuth-Yao) constant time

v

Signatures need large (linear) number of Gaussian samples anyway

v

Use Hoeffding-type bounds
* Each sample takes on average ¢ random bits, max of n WHP
* All n samples take combined time cn on average

* With overwhelming prob, all n samples take at most cn + n time.

v

Have algorithm run in “time” proportional to cn + n being used.

\4

Pitfall: Making sure implementation is constant time is extremely hard
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Walter-Micciancio Sampling

SAMPLEI(7)
SAMPLEZb,k,max (¢, o) ifi=0 Tk
z  SAMPLEI(max) z + SAMPLEB,, (0) SI:?ZLE%I’ (c€b™2)
K « V0? — 52/0max return z re;urn 0
d + le+ Kz Z1 + SAMPLEI(i — 1) g« b-*+1GAmpLEB,, (HLc)
y < SAMPLEC) 4, (') Z5 < SAMPLEI(i — 1) o ket
return y Y = 231 + max(1, % — 1)as return g + SAMPLEC(c— g € b Z)
return y

Algorithm 1: A sampling algorithm for Dz, for arbitrary ¢ and o. Definitions for z; and o; as in (3) and
(4) and & as in (5). SAMPLEB is an arbitrary base sampler for fixed o and small number of cosets ¢ + Z,
where ¢ € Z/b.

zi = o1/ 20(Z) ], 0% = (22 + max((z; — 1)2,1))02 ,

> New algorithm with constant-time online phase

16 /19



Walter-Micciancio Sampling

SAMPLEI(7)
SAMPLEZ &, max (¢, o) ifi=0 Lk
z < SAMPLEI(max) z < SAMPLEB,, (0) SI:?ZLE%I’ (c€b™Z)
K « V0? — 52/0max return z re;urn 0
d + le+ Kz Z1 ¢ SAMPLEI(i — 1) g« b-FHGavpLEB,, (F-1c)
y < SAMPLEC) 4, (') Z5 < SAMPLEI(i — 1) o i1
return y Y = 231 + max(1, % — 1)as return g + SAMPLEC(c— g € b Z)
return y

Algorithm 1: A sampling algorithm for Dz, for arbitrary ¢ and o. Definitions for z; and o; as in (3) and
(4) and & as in (5). SAMPLEB is an arbitrary base sampler for fixed o and small number of cosets ¢ + Z,
where ¢ € Z/b.

zi = o1/ 2n.(Z (22 + max((z — 1)%,1))0? 4
> New algorithm with constant-time online phase

» Works by recursively combining samples with smaller os.

16

19



Walter-Micciancio Sampling

SAMPLEI(7)
SAMPLEZ &, max (¢, o) ifi=0 Lk
z < SAMPLEI(max) z < SAMPLEB,, (0) Sﬁ??ﬁ% (c€b™Z)
K « V0? — 52/0max return z re;urn 0
d + le+ Kz Z1 ¢ SAMPLEI(i — 1) g« b-FHGavpLEB,, (F-1c)
y < SAMPLEC) 4, (') Z5 < SAMPLEI(i — 1) o i1
return y Y = 231 + max(1, % — 1)as return g + SAMPLEC(c— g € b Z)
return y

Algorithm 1: A sampling algorithm for Dz, for arbitrary ¢ and o. Definitions for z; and o; as in (3) and
(4) and & as in (5). SAMPLEB is an arbitrary base sampler for fixed o and small number of cosets ¢ + Z,
where ¢ € Z/b.

zi = o1/ 2n.(Z (22 + max((z — 1)%,1))0? 4
> New algorithm with constant-time online phase
» Works by recursively combining samples with smaller os.

» Assumes access to Dz o, with small o9 > V21.(Z)

16

19



Walter-Micciancio Sampling

SAMPLEI(7)
SAMPLEZ &, max (¢, o) ifi=0 Lk
z < SAMPLEI(max) z < SAMPLEB,, (0) Sﬁ??ﬁ% (c€b™Z)
K « V0? — 52/0max return z re;urn 0
d + le+ Kz Z1 ¢ SAMPLEI(i — 1) g« b-FHGavpLEB,, (F-1c)
y < SAMPLEC) 4, (') Z5 < SAMPLEI(i — 1) o i1
return y Y = 231 + max(1, % — 1)as return g + SAMPLEC(c— g € b Z)
return y

Algorithm 1: A sampling algorithm for Dz, for arbitrary ¢ and o. Definitions for z; and o; as in (3) and
(4) and & as in (5). SAMPLEB is an arbitrary base sampler for fixed o and small number of cosets ¢ + Z,
where ¢ € Z/b.

zi = o1/ 2n.(Z (22 + max((z — 1)%,1))0? 4
> New algorithm with constant-time online phase
» Works by recursively combining samples with smaller os.

» Assumes access to Dz o, with small o9 > V21.(Z)
* Authors suggest generating these offline in “idle times”
* Doesn't seem plausible for constrained devices

* Relies on idle time (frequent queries could eliminate it)
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Walter-Micciancio (Runtime)

samples per s in 10°

samples per s in 10°
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o= 2567

~Convolved KY
~Discrete Ziggurat

-
IS

~~Convolved KY
~Discrete Ziggurat

Bernoulli-type % 12}| - Bernoulii-type
2
15 c
10
wn
@
8
10 Q
%]
QL
o 6
&
[ / "
Dt e s et SR T P ST S ST ST S S S S ST 5w
Memory in bytes Memory in bytes
o= 11060 o= a5
10
-~Convolved KY 7f|-~Convolved KY
9} |+Discrete Ziggurat ~ —Discrete Ziggurat
Bernoulli-type =) Bernoulli-type
gl| ~Karney — 6}| -Karney
£
7 ns
: g
4
5 %]
S
4 Q3 [
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, £
3 ©
w2
2
ST i S ot T D T T T

Memory in bytes

Memory in bytes

Figure 1: Time memory trade-off for combination sampler (“Convolved KY”) and discrete Ziggurat compared
to Bernoulli-type sampling for o € {2°,210,2'4 217}/2r. Knuth-Yao corresponds to right most point of
“Convolved KY”.
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Even Tables Are Vulnerable - To Cache Attacks

» Table access is constant-time. Or is it??

» FLUSH+4RELOAD attack uses clflush instruction (on x86-64)

@ Evicts memory block from cache,
@® Lets victim execute

© Measures time to access same memory block
» Flush, Gauss and Reload uses this on Gaussian sampling in BLISS
» Requires roughly 3000 signatures
» FLUSH+4RELOAD must be run on same system as crypto
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Can We Avoid Discrete Gaussians?

P Seems like it should be easier for SIS-based cryptography

* Unlike LWE, SIS problem is not defined with a noise distribution
* Just need to find short solution

P Discrete Gaussians do give tightest bounds, but how much tighter?

»> Would be nice to see concrete implementations without them
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